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BOUNDS FOR p-ADIC EXPONENTIAL SUMS AND LOG-CANONICAL
THRESHOLDS

By RAF CLUCKERS and WILLEM VEYS

Dedicated to the memory of Professor Jun-ichi Igusa, source of inspiration.

Abstract. We propose a conjecture for exponential sums which generalizes both a conjecture by Igusa
and a local variant by Denef and Sperber, in particular, it is without the homogeneity condition on
the polynomial in the phase, and with new predicted uniform behavior. The exponential sums have
summation sets consisting of integers modulo pm lying p-adically close to y, and the proposed bounds
are uniform in p, y, and m. We give evidence for the conjecture, by showing uniform bounds in p, y,
and in some values for m. On the way, we prove new bounds for log-canonical thresholds which are
closely related to the bounds predicted by the conjecture.

1. Introduction and main results. We introduce a generalization of a con-
jecture by Igusa [12, p. 2] (and of a variant by Denef and Sperber [9, p. 2]), which
Igusa related to integrability properties over the adèles and to an adèlic Poisson
summation formula in [12, Chapter 4]. We give evidence for this conjecture, which
is also new evidence for the original conjectures of [9, 12]. The conjecture is about
upper bounds for exponential sums of the form

∑

x∈{1,...,N}n
exp

(
2πi

F (x)

N

)

for general polynomials F over Z in n variables, expressed in terms of N and
holding for all squarefull integers N . It is most conveniently expressed when N
is a power of a prime number, the power being at least 2, and can be studied via
a local variant, see the sums S and Sy below and Conjecture 1.2. A variant over
number fields is given in Section 2.6.

Let us fix a nonconstant polynomial F in n variables over Z. Consider, for any
integer m> 1 and any prime number p, the exponential sum

S(F,p,m) := p−mn ·
∑

x∈(Z/pmZ)n

exp

(
2πi

F (x)

pm

)
,
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62 R. CLUCKERS AND W. VEYS

and, for any y ∈ Z
n, its local version

Sy(F,p,m) := p−mn ·
∑

x∈y+(pZ/pmZ)n

exp

(
2πi

F (x)

pm

)
,

where

y+(pZ/pmZ)n = {x ∈ (Z/pmZ)n | xi ≡ yi mod (p) for each i}.

Our conjectured bounds for the above sums in terms of p, m, and y (and our
evidence for these bounds) will involve log-canonical thresholds, but a stronger for-
mulation in terms of the motivic oscillation index of [5] or the complex oscillation
index of [1, 13.1.5] would also make sense and would in fact sometimes be sharper.
For any field k of characteristic zero, a polynomial f ∈ k[x] = k[x1, . . . ,xn] and a
point y ∈ kn satisfying f(y)= 0, we write cy(f) to denote the log-canonical thresh-
old of f at y (see Definition 2.1 below), and c(f) for the log canonical threshold
of f , being the minimum of the cy(f) when y runs over all points in k

n
satisfying

f(y) = 0, where k is an algebraic closure of k. Let us fix some more notation.

Definition 1.1. Let a(F ) be the minimum, over all b ∈ C, of the log-canonical
thresholds of the polynomials F (x)− b. Further, for y ∈ Z

n, let ay,p(F ) be the
minimum of the log-canonical thresholds at y′ of the polynomials F (x)−F (y′),
where the minimum is taken over all y′ ∈ y+(pZp)

n. Note that a(F ) ≤ ay,p(F )
for each p and y.

Now we can state our generalization of the conjectures by Igusa and by Denef
and Sperber.

CONJECTURE 1.2. There exists a function LF : N→ N with LF (m)�mn−1

such that for all primes p, all m≥ 2, and all y ∈ Z
n, one has

|S(F,p,m)|C ≤ LF (m)p−ma(F )(1.2.1)

and

|Sy(F,p,m)|C ≤ LF (m)p−may,p(F ),(1.2.2)

where | · |C is the complex modulus.

Under some extra conditions that were introduced by Igusa for reasons of his
application to adèlic integrability but that we believe are irrelevant for bounding
the above sums, he conjectured in the introduction of [12] that (1.2.1) holds for
all homogeneous F and all m ≥ 1. We believe that focusing on m at least 2 al-
lows one to remove the homogeneity condition, and we give evidence below. The
bounds (1.2.1) (with the log-canonical threshold, resp. the variant with the motivic
oscillation index of [5] in the exponent) imply Igusa’s original conjecture (with
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the log-canonical threshold, resp. his proposed candidate oscillation indices in the
exponent), including the case m = 1, by [5]. Indeed, the case m = 1 of Igusa’s
conjecture (for homogeneous F ) is known by [5] for any of these exponents. The
estimates (1.2.1) of the conjecture yield a criterion to show adèlic Lq-integrability
for an adèlic function related to S(F,p,m), with a simple lower bound on q based
on the exponent a(F ), as noted by Igusa in [12, Chapter 4]. Denef and Sperber
[9] conjectured the local variant (1.2.2) for y = 0, thus without uniformity in y.
Both inequalities, namely the global (1.2.1) and the local but uniform (1.2.2), seem
closely related.

We prove Conjecture 1.2 for m up to 4, and, in fact, for m up to a value related
to orders of vanishing which is at least 4 and is based on the constants r and ry,p
from the following definition.

Definition 1.3. Let r be the minimum of the order of vanishing of the functions
x 	→ F (x)− b at the singular points in C

n of F = b, i.e., the minimum of the
multiplicities of the singular points of the hypersurfaces F = b, where b runs over
C. Here we consider the minimum over the empty set to be +∞. Further, for y ∈Zn,
let ry,p be the minimum of the order of vanishing of the functions x 	→ F (x)−
F (y′) at y′, where y′ runs only over singular points in the p-adic neighborhood
y+(pZp)

n for which moreover cy′(F −F (y′)) = ay,p(F ).

Note that by definition ry,p≥ r≥ 2 and 1≥ ay,p(F )≥ a(F )> 0. With notation
as introduced above and with +∞+a= +∞ for any real a, we can now state our
main result as evidence for Conjecture 1.2.

THEOREM 1.4. There exists a constant LF such that, for all prime numbers p,
all y ∈ Z

n, and all m with 2≤m≤ r+2, resp. with 2≤m≤ ry,p+2, one has

|S(F,p,m)|C ≤ LFp
−ma(F ),(1.4.1)

resp.

|Sy(F,p,m)|C ≤ LFp
−may,p(F ).(1.4.2)

Theorem 1.4 is proved using new inequalities for log-canonical thresholds and
by reducing to finite field exponential sums for which bounds by Katz [13] can
be used, see Lemma 2.3. In Section 2.6, we explain analogues over finite field
extensions of Qp and Fp((t)), for large primes p.

Let us now explain the bounds on log-canonical thresholds related to
the conjecture. Let f be a nonconstant polynomial over C in the variables
x= (x1, . . . ,xn), and write

f =
∑

i≥r
fi,(1.4.3)
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with fi either identically zero or homogeneous and of degree i, and where fr is
nonzero for some r ≥ 2. As before, write c0(f) for the log-canonical threshold of
f at zero. If f is non-reduced at zero (that is, g2 divides f for some polynomial g
which vanishes at 0), then one knows that

c0(f)≤ 1
2
.(1.4.4)

In any case one has (see Section 8 of [14])

c0(f)≤ n

r
.(1.4.5)

The following inequalities can be considered as a certain combination of the above
two (quite obvious) inequalities, but with the non-reducedness assumption on fr
instead of on f .

LEMMA 1.5. Suppose that g2 divides fr for some nonconstant polynomial g.
Then one has the inequality

(r+1)c0(f)≤ n+ 1
2
.(1.5.1)

If moreover g divides fr+1 (this includes the case fr+1 identically zero), then

(r+2)c0(f)≤ n+1.(1.5.2)

Lemma 1.5 will be obtained as a corollary of the following sharper and uncon-
ditional bounds, which we think are of independent interest.

PROPOSITION 1.6. With notation from (1.4.3), one has

(r+1)c0(f)≤ n+ c(fr).(1.6.1)

One should compare (1.6.1) with the bound |c0(f)− c(fr)| ≤ n/(r+1) from
Proposition 8.19 of [14]. A generalization of Proposition 1.6, with a bound for
(e+ 1)c0(f) for arbitrary e > 0, is given in Section 2.9, see Theorem 2.10. By
combining Lemma 1.5 and Proposition 1.6 with results from [11], we obtain global
variants.

PROPOSITION 1.7. Let r > 1 be an integer and let f be a polynomial in n
variables over C. Suppose, for y running over an irreducible d-dimensional variety
Y ⊂ C

n, that f vanishes with order at least r at y. For y ∈ Y , let us write fy(x)
for the polynomial f(x+y) in the variables x, and fy =

∑
i≥r fy,i with fy,i either

identically zero or homogeneous and of degree i. Then one has

rcy(f)≤ n−d(1.7.1)
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and, for a generic y ∈ Y ,

(r+1)cy(f)≤ n−d+ c(fy,r).(1.7.2)

In particular, for a generic y ∈ Y , if fy,r is non-reduced, then

(r+1)cy(f)≤ n−d+ 1
2
.(1.7.3)

If, for a generic y ∈ Y , there is a nonconstant polynomial gy which divides fy,r+1

and such that g2
y divides fy,r, then one further has

(r+2)cy(f)≤ n−d+1.(1.7.4)

The proofs of Theorem 1.4, Proposition 1.6, Lemma 1.5 and the global variants
are given in Section 2.

1.8. Some context and notation. Conjecture 1.2 is known when the im-
plied constant is allowed to depend on the prime number p, see [12, 10]. Namely,
for each prime p there exists a function LF,p : N→N with LF,p(m)�mn−1, such
that for all m≥ 2 and all y ∈ Z

n
p , both estimates

|S(F,p,m)|C ≤ LF,p(m)p−ma(F )(1.8.1)

and

|Sy(F,p,m)|C ≤ LF,p(m)p−may,p(F )(1.8.2)

hold. In the case that F is non-degenerate with respect to (the compact faces of)
the Newton polyhedron at zero of F , then the bounds (1.2.2) with y = 0 hold, see
[9, 6]. If F is non-degenerate and quasi-homogeneous, then also the bounds from
(1.2.1) hold, by [9, 6]. For other work on Igusa’s original conjecture, we refer to [4,
5, 15, 18]. Lemma 5.4 of [3] gives other evidence for Conjecture 1.2, under some
specific geometric conditions. Related exponential sums in few variables (namely
with small n) have been studied in [15, 18] and in [7, 8].

Below we will write | · | instead of | · |C for the complex norm. For complex
valued functions H and G on a set Z , the notation H �G means that there exists
a constant c > 0 such that |H(z)| ≤ c|G(z)| for all z in Z . All integrals over Kn,
for any non-archimedean local field K with valuation ring OK , will be against the
Haar measure |dx| on Kn, normalized so thatOn

K has measure 1. We write Falg
p for

an algebraic closure of Fp, the field with p elements.

Acknowledgments. The authors would like to thank J. Denef, E. Kowalski, and
S. Sperber for their generous sharing of insights. We would like to express special
thanks towards M. Mustaţǎ and J. Nicaise for discussions around Proposition 1.6
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and Theorem 2.10, after which M. Mustaţǎ showed us another proof for Proposition
1.6, different to the two given proofs above.

The first author thanks the Forschungsinstitut für Mathematik (FIM) at ETH
Zürich and the MSRI in Berkeley, California, under Grant No. 0932078 000, for
their hospitality during the spring semester of 2014.

2. Proofs of the main results. We first recall two descriptions of the log-
canonical threshold.

Definition 2.1. For a nonconstant polynomial f in n variables over an alge-
braically closed field K of characteristic zero, and y ∈Kn satisfying f(y) = 0, the
log-canonical threshold of f at y is denoted by cy(f) and defined as follows. For
any proper birational morphism π : Y →Kn from a smooth variety Y , and for any
prime divisor E on Y , we denote by N and ν−1 the multiplicities along E of the
divisors of π∗f and π∗(dx1∧ ·· ·∧dxn), respectively. Then

cy(f) = inf
π,E

{
ν

N

}
,

where π runs over all π as above and E over all prime divisors on Y such that
y ∈ π(E). For a polynomial f over a non-algebraically closed field k of character-
istic zero and y ∈ kn satisfying f(y) = 0, one defines cy(f) as above with K any
algebraic closure of k. Finally, when f is the zero polynomial, one defines c(f) as
0.

In fact cy(f) = minE{ ν
N }, where π is any fixed embedded resolution of the

germ of f = 0 at y (and y ∈ π(E)). Note that always cy(f) ≤ 1, a property not
shared by the motivic oscillation index of f , and neither by the complex oscillation
index of f , see [1, Chapter 13, and, p. 203], [5, 16].

By Mustaţǎ’s Corollaries 0.2 and 3.6 of [17], we can describe the log-canonical
threshold by taking certain codimensions, as follows.

Let p be an integer and h a nonconstant polynomial over C in n variables.
Write Cont≥p(h) for the subset of C[[t]]n given by

{
x ∈C[[t]]n | h(x)≡ 0 mod (tp)

}

and Cont≥p0 (h) for
{
x ∈ C[[t]]n | h(x) ≡ 0 mod (tp), x ∈ (tC[[t]])n

}
.

Let us further write

codimCont≥p(h)

for the codimension of ρm(Cont≥p(h)) in ρm(C[[t]]n) for any m≥ p, where ρm :
C[[t]]n→ (C[t]/(tm+1))n is the projection modulo tm+1 in each coordinate. Here,
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ρm(Cont≥p(h)) is seen as a Zariski closed subset of Cn(m+1) ∼= ρm(C[[t]]n). The
definition is independent of the choice of m. We write similarly codim Cont≥p0 (h)

for the codimension of ρm(Cont≥p0 (h)) in ρm(C[[t]]n) for any m≥ p.
By Corollary 0.2 of [17], for all integers k > 0, we have

c(h) ≤ codim Cont≥k(h)
k

(2.1.1)

and there exist infinitely many k > 0 for which equality holds. Also, if h vanishes
at 0, one has by Corollary 3.6 of [17] that

c0(h) = inf
k>0

codimCont≥k0 (h)

k
.(2.1.2)

Based on these relations, we can now prove Proposition 1.6.

Proof of Proposition 1.6. By the equality statement concerning (2.1.1) for fr,
there exists k > 0 such that

c(fr) =
codimCont≥k(fr)

k
.(2.1.3)

Let � be kr+k. Now define the cylinder B ⊂ C[[t]]n as

B := {x ∈ C[[t]]n | ρk−1(x) = {0}, ordt fr(x)≥ �}.
By the homogeneity of fr, the cylinder B can be considered (under corresponding
identifications), as

ρk−1(B)× tkCont≥k(fr) = {0}× tkCont≥k(fr)⊂ C[[t]]n.

Again by the homogeneity of fr and the fact that f − fr has multiplicity at least
r+1, one has

B ⊂ Cont≥�0 (f).

Hence, by (2.1.2), one finds

c0(f)≤ codimB

�
,(2.1.4)

where codimB is defined as the codimension of ρm(B) in ρm(C[[t]]n) for large
enough m. On the other hand, one finds from (2.1.1) that

codimB = kn+ codim(Cont≥k(fr)) = kn+kc(fr).

Using this together with (2.1.4) and dividing by k, one finds (1.6.1). �

It is also possible to give a proof for Proposition 1.6 based on embedded reso-
lution of singularities, without using Mustaţǎ’s formulas.
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Alternative proof of Proposition 1.6. Let π0 : Y0 → C
n be the blowing-up at

the origin; its exceptional divisor E0 is projective (n− 1)-space. We consider for
example the chart on Y0 where E0 is given by x1 = 0 and π∗0f by

xr1

(
fr(1,x2, . . . ,xn)+x1

∑

i≥r+1

xi−r−1
1 fi(1,x2, . . . ,xn)

)
.

Along E0 the multiplicity of the pullback of dx = dx1 ∧ ·· · ∧ dxn is n and the
multiplicities of both π∗0f and π∗0fr are r.

We now perform a composition of blowing-ups Y → Y0, leading to an embed-
ded resolution π : Y → C

n of fr = 0. More precisely, for example on the chart
above, we only use centers “not involving x1”; hence they all have positive dimen-
sion and are transversal to E0. Say c(fr) = ν

N , where E is an exceptional compo-
nent of π such that along E the multiplicities of the pullback of dx and fr are ν
and N , respectively. We may assume that E �= E0; otherwise c(fr) = n

r and the
statement becomes trivial.

Consider analytic or étale coordinates x1,y2, . . . ,yn in a generic point of E ∩
E0 ⊂ Y such that E is given by y2 = 0. In that point π∗f is of the form

xr1
(
yN2 u(y2, . . . ,yn)+x1(· · · )

)
,

where u(y2, . . . ,yn) is a unit. Next, we blow up Y at the codimension two center
Z1 =E∩E0 given (locally) by x1 = y2 = 0. Along the new exceptional divisor E1

the multiplicities of the pullback of dx and f are n+ ν and r+μ1, respectively,
where μ1 ≥ 1 is the order of vanishing of yN2 u(y2, . . . ,yn) + x1(· · · ), the strict
transform of f , along Z1. In fact, in the relevant chart the pullback of f is now of
the form

xr1y
r+μ1
2

(
yN−μ1

2 u(y2, . . . ,yn)+x1(· · · )
)
.

As long as E0 intersects the strict transform of f = 0, we continue to blow up with
center this intersection, in the relevant chart always given by x1 = y2 = 0. LetEk be
the last exceptional component created this way. Then along Ek the multiplicities
of the pullback of dx and f are kn+ν and kr+

∑k
i=1μi, respectively, where the μi

are the orders of vanishing of the strict transform of f along the centers of blow-up.
Note that

∑k
i=1μi =N . We just showed that

c0(f)≤ kn+ν

kr+N
.(2.1.5)

An elementary computation, using that ν
N ≤ n

r and k ≤N , shows that

kn+ν

kr+N
≤ n+ ν

N

r+1
=
n+ c(fr)

r+1
.(2.1.6)

Then combining (2.1.5) and (2.1.6) finishes the proof. �
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Remark 2.2. (1) The proof above can be shortened by using a weighted blow-
up instead of the last k blow-ups.

(2) M. Mustaţǎ informed us of yet another proof of Proposition 1.6, using mul-
tiplier ideals.

Proof of Lemma 1.5. The inequality (1.5.1) follows from (1.6.1) and (1.4.4)
for fr. For inequality (1.5.2) and with g as in the lemma, consider the cylinder C
given by

{
x ∈C[[t]]n | ρ0(x) = 0, ordt g

(
x1

t
, . . . ,

xn
t

)
≥ 1

}
.

Then one easily verifies that

C ⊂ Cont≥r+2
0 (f)

and codimC = n+ 1. The result now follows from Mustaţǎ’s bound as in (2.1.2)
for f and k = r+2. �

Proof of Proposition 1.7. By Theorem 1.2 of [11], one has for generic y in Y
and a generic vector subspace H of Cn of dimension n−d that

c0(fy|H) = cy(f),

where fy|H is the restriction of the polynomial map fy to H . The proposition now
follows from the genericity of y and H , by (1.4.5) and by Proposition 1.6 and
Lemma 1.5 applied to fy|H . �

In the proof of our main theorems we will use the following lemmas. The first
one follows almost directly from work by Katz in [13] and Noether normalization.

LEMMA 2.3. Let n,k,N be nonnegative integers. Then there exist constants D
and E such that the following hold for all prime numbers p with p >E, all positive
powers q of p, and all nontrivial additive characters ψq on Fq. Let g1, . . . ,gk and
h be (nonconstant) homogeneous polynomials in x= (x1, . . . ,xn) with coefficients
in Z and of degree at most N . Let X be the reduced subscheme of An

Z
associated

to the ideal (g1, . . . ,gk).
If h (modulo p) does not vanish on any irreducible component of Xp :=X⊗

F
alg
p of dimension equal to dimXp, then

∣∣∣∣∣∣

∑

y∈X(Fq)

ψq

(
h(y)

)
∣∣∣∣∣∣
≤D · qdimXp−1/2.(2.3.1)
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If the image of h in F
alg
p [x] under Z[x]→ F

alg
p [x] is reduced, then

∣∣∣∣∣∣

∑

y∈Fn
q

ψq

(
h(y)

)
∣∣∣∣∣∣
≤D · qn−1.(2.3.2)

Proof. The bounds in (2.3.2) follow immediately from Katz [13], Theorem 4.
In the case that Xp is irreducible, the bounds in (2.3.1) follow from Theorem 5 of
[13]. The remaining case that Xp is reducible follows from the irreducible case and
Noether normalization. �

From now on, let F and r be as in the introduction. We will use some instances
of the Ax-Kochen principle, Theorem 6 of [2], like the following lemma.

LEMMA 2.4. For large enough p, any v ∈ F
n
p , and any y ∈ Z

n
p lying above v,

the following holds. If the reduction of F modulo p vanishes with order r at v, then

ord(F (y))≥ r,

where ord is the p-adic order Qp→ Z∪{+∞}.

Proof. The statement is easily reduced to a simple statement over a discrete
valuation ring of equicharacteristic zero. One finishes by a standard ultraproduct
argument (namely by the Ax-Kochen principle). �

LEMMA 2.5. Let V be the subscheme of An
Z

given by the equations gradF = 0.
If p is large enough, then one has for any m> 1 that

S(F,p,m) =
∑

v∈V (Fp)

∫

u∈Zn
p , u≡v mod p

exp(2πi
F (u)

pm
)|du|

and that Sy(F,p,m) = 0 whenever the reduction of y modulo p does not lie in
V (Fp).

Proof. This follows by taking Taylor series around y and by the basic relation

∑

t∈Fp

ψp(t) = 0

for any nontrivial additive character ψp on Fp. �

We begin with the proof of the almost trivial part of Theorem 1.4.

Proof of Theorem 1.4 for m≤ r, resp. m≤ ry,p. Note that for small p, there is
nothing to prove by (1.8.1), resp. (1.8.2). If r = +∞, the theorem follows easily.
We may thus suppose that r < +∞ and that p is large. Let V be the subscheme of
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A
n
Z

given by the equations gradF = 0, and write d for the dimension of V ⊗C. Fix
m> 1 with m≤ r, resp. m≤ ry,p. For all y ∈ Z

n one has

ma(F )≤ ra(F )≤ n−d,

by (1.7.1), resp.

may,p(F )≤ ry,pay,p(F ).

Also, when p is large enough, one has

S(F,p,m) = p−n#V (Fp),

resp.,

Sy(F,p,m) = p−n and ry,pay,p(F )≤ n(2.5.1)

for y mod p in V (Fp), and

Sy(F,p,m) = 0

for y mod p outside V (Fp). Indeed, this follows by Lemmas 2.4 and 2.5. By
Noether normalization there exists D such that

#V (Fp)≤Dpd,

uniformly in p. One readily finds

|S(F,p,m)| ≤Dp−ma(F ),

resp.

|Sy(F,p,m)| ≤ p−may,p(F ),

for all large p and all y ∈ Z
n, which finishes the proof. �

Proof of Theorem 1.4 for m= r+1, resp. m= ry,p+1. Note that for small p,
there is nothing to prove by (1.8.1), resp. (1.8.2). We may thus again suppose that
p is large and that r < +∞. Fix y ∈ Z

n. By Lemma 2.5 we may suppose that
there exists a critical point y′ ∈ y+ (pZp)

n of F , such that F −F (y′) vanishes
with order ry,p at y′ and cy′(F −F (y′)) = ay,p(F ). Write fy(x) for F (x+ y′)−
F (y′) and fy =

∑
i≥ry,p fy,i with fy,i either identically zero or homogeneous and

of degree i and with fy,ry,p nonzero for a choice of such y′. We first prove (1.4.2)
by the following calculation, where ψ is the additive character on Qp sending x to
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exp(2πix′) for any rational number x′ which lies in Z[1/p] and satisfying x−x′ ∈
Zp, and with Haar measure normalized as in Section 1.8:

Sy(F,p,ry,p+1) =
∫

x∈y+(pZp)n
ψ

(
F (x)

pry,p+1

)
|dx|

=

∫

x∈(pZp)n
ψ

(
fy(x)+F (y

′)
pry,p+1

)
|dx|

=
by
pn

∫

u∈Zn
p

ψ

(
pry,pfy,ry,p(u)+p

ry,p+1fy,ry,p+1(u)+ · · ·
pry,p+1

)
|du|

=
by
pn

∫

u∈Zn
p

ψ

(
pry,pfy,ry,p(u)

pry,p+1

)
|du|

=
by
pn

∫

u∈Zn
p

ψ

(
fy,ry,p(u)

p

)
|du|

=
by
pn

∑

v∈Fn
p

∫

u∈Zn
p , u=v

ψ

(
fy,ry,p(u)

p

)
|du|

=
by
p2n

∑

v∈Fn
p

ψp

(
fy,ry,p(v)

)
.

Here we denote by u the tuple in F
n
p obtained by reduction mod p of the com-

ponents ui ∈ Zp of u, by ψp the nontrivial additive character on Fp sending w to
ψ(w′/p) for any w′ ∈ Zp which projects to w, by fy,ry,p the reduction modulo p of
fy,ry,p, and we put

by := ψ

(
F (y′)
pry,p+1

)
.

Now by Lemma 2.3, applied to h = fy,ry,p and with k = 0, there exists a constant
D > 0 such that

∣∣∣∣∣∣

∑

v∈Fn
p

ψp

(
fy,ry,p(v)

)
∣∣∣∣∣∣
≤D ·pn−δy,p

for each large p and uniformly in y for δy,p so that δy,p = 1/2 in the case that fy,ry,p
is non-reduced, and δy,p = 1 in the case that fy,ry,p is reduced.

We claim, for large p and for all y ∈ Z
n, that

(ry,p+1)c0(fy)≤ n+ δy,p.(2.5.2)

If y′ is a non-isolated critical point of F (in the set of critical points of F with
coordinates in an algebraic closure of Qp), then ry,pc0(fy) ≤ n−1 by (1.7.1) and
the claim follows from c0(fy) ≤ 1. Also, if δy,p = 1, then the claim follows from
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(1.4.5) and c0(fy)≤ 1. In the case that y′ is an isolated critical point (in the set of
critical points of F with coordinates in an algebraic closure of Qp) and δy,p = 1/2
simultaneously, it follows from our assumption that p is large that fy,ry,p is non-
reduced and thus (2.5.2) follows from Lemma 1.5. This assumption of p being
large is uniform in y since there are only finitely many isolated critical points of F .
Hence, we find for all large p and all y that

∣∣Sy
(
F,p,ry,p+1

)∣∣= 1
p2n

∣∣∣∣∣∣

∑

v∈Fn
p

ψp

(
fy,ry,p(v)

)
∣∣∣∣∣∣

≤D ·p−n−δy,p(2.5.3)

≤D ·p−(ry,p+1)c0(fy) ≤D ·p−(ry,p+1)ay,p(F ).(2.5.4)

This completes the proof of (1.4.2) for all y and m= ry,p+1.
To show (1.4.1), let V be the subscheme of An

Z
given by the equations gradF =

0, and let d be the dimension of V ⊗C. For each v ∈ V (Fp), fix a point y(v) in Z
n

lying above v, and a critical point y′(v) of F lying above v such that F −F (y′(v))
vanishes with order ry(v),p and cy′(F −F (y′)) = ay,p(F ) (such y′ exists since p is
assumed large). Now (1.4.1) for m=r+1 follows by estimating, for large primes p,

∣∣S(F,p,r+1)
∣∣ =

∣∣∣∣∣∣

∑

v∈V (Fp)

Sy(v)(F,p,r+1)

∣∣∣∣∣∣
(2.5.5)

≤
∑

v∈V (Fp)

D ·p−n−εv ,(2.5.6)

for some D > 0, and where εv equals δy(v),p whenever r = ry,p and where εv = 0
when r < ry,p. Here the equality (2.5.5) follows from Lemma 2.4, and the inequal-
ity (2.5.6) comes from (2.5.3) when r = ry,p and from (2.5.1) when r < ry,p. By
quantifier elimination for the language of rings with coefficients in Z, there exist
V0, V1/2, and V1, such that Vi is a finite disjoint union of subschemes of V (it is
constructible and defined over Z) with ∪iVi(C) = V (C) and such that the follow-
ing hold, for i = 0, 1

2 , and 1. The polynomial F −F (b) vanishes with order > r

at b for b ∈ V0(C), F −F (b) vanishes with order r at b for b ∈ V1/2(C) and also
for b ∈ V1(C), and (F (x+ b)−F (b))r is reduced for b ∈ V1(C), and non-reduced
for b ∈ V1/2(C). Let di be the dimension of Vi⊗C. Note that for large p, one has
εv = i for v ∈ Vi(Fp). Now we bound as follows:

∣∣S(F,p,r+1)
∣∣≤

∑

i

#Vi(Fp)D ·p−n−i(2.5.7)

≤
∑

i

#Vi(Fp) ·D ·p−(r+1)a(F )−di(2.5.8)

≤D′p−ma(F ),(2.5.9)
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for some D′. The inequality (2.5.7) follows from (2.5.6), (2.5.8) follows from
Proposition 1.7 and the definition of a(F ) as a minimum, and (2.5.9) from Noether
normalization. �

Proof of Theorem 1.4 for m= r+2, resp. m= ry,p+2. For the same reasons
as in the previous proofs we may concentrate on large primes p and suppose
r < +∞. Fix y ∈ Z

n. By Lemma 2.5 we may suppose that there exists a critical
point y′ ∈ y+(pZp)

n of F , such that F −F (y′) vanishes with order ry,p at y′ and
cy′(F −F (y′))= ay,p(F ). Write fy(x) for F (x+y′)−F (y′) and fy =

∑
i≥ry,p fy,i

with fy,i either identically zero or homogeneous and of degree i, and where fy,ry,p
is nonzero. We first prove (1.4.2). Let X be the subscheme of An

Zp
associated to

the equations gradfy,ry,p = 0. Let Ap be the subset of Zn
p of those points whose

projection mod p lies in X(Fp). Also, let Cp be the complement of Ap in Z
n
p . We

calculate as follows:

Sy(F,p,ry,p+2) =
∫

x∈y+(pZp)n
ψ

(
F (x)

pry,p+2

)
|dx|

=
by
pn

∫

u∈Zn
p

ψ

(
pry,pfy,ry,p(u)+p

ry,p+1fy,ry,p+1(u)

pry,p+2

)
|du|

=
by
pn

∫

u∈Zn
p

ψ

(
fy,ry,p(u)+pfy,ry,p+1(u)

p2

)
|du|

=
by
pn

(
I1 + I2

)
,

where by = ψ
( F (y′)
pry,p+2

)
,

I1 = I1(y) =

∫

u∈Ap

ψ

(
fy,ry,p(u)+pfy,ry,p+1(u)

p2

)
|du|,

and

I2 = I2(y) =

∫

u∈Cp

ψ

(
fy,ry,p(u)+pfy,ry,p+1(u)

p2

)
|du|.

One has I2 = 0 by Hensel’s Lemma and by the basic relation

∑

t∈Fp

ψp(t) = 0

for the nontrivial additive character ψp on Fp.
To estimate |I1|, we first assume the condition on y and y′ that fy,ry,p+1 van-

ishes on at least one absolutely irreducible component ofX of maximal dimension.
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We will show that this condition on y and y′ implies

(ry,p+2)c0(fy)≤ 2n−dim(X⊗Qp).(2.5.10)

If dim(X⊗Qp)≤n−2, then (2.5.10) follows from (ry,p+2)c0(fy)≤n+2, which
in turn follows from c0(fy) ≤ 1 and (1.4.5). If dimX ⊗Qp = n− 1 one has that
(ry,p+2)c0(fy) ≤ n+1 by Lemma 1.5, and (2.5.10) follows also in this case and
thus in general. By Noether normalization, there exists E > 0 independent of y
such that

#X(Fp)≤ Epdim(X⊗Qp)

for all large p. Since

|I1| ≤ #X(Fp)

pn
,

we find from the above discussion that, for all y satisfying the above condition,

1
pn
|I1| ≤ Epdim(X⊗Qp)−2n ≤ Ep−(ry,p+2)c0(fy) ≤ Ep−(ry,p+2)ay,p(F )

for all large p.
Finally assume the condition on y and y′ that fy,ry,p+1 does not vanish on any

absolutely irreducible component ofX of maximal dimension. By Lemma 2.4, one
can rewrite I1 for large p as

I1 =

∫

u∈Ap

ψ

(
fy,ry,p+1(u)

p

)
|du|.

Using this expression we compute

1
pn
I1 =

1
pn

∑

v∈X(Fp)

∫

u=v, u∈Zn
p

ψ

(
fy,ry,p+1(u)

p

)
|du|

=
1
p2n

∑

v∈X(Fp)

ψp

(
fy,ry,p+1(v)

)
,

where the notations u, ψp, and fy,ry,p+1 are as in the proof of the case m= ry,p+1,
namely reductions modulo p. By Lemma 2.3, there exists N > 0 such that, for all
y satisfying the above condition, and for all large p,

∣∣∣∣∣∣

∑

y∈X(Fp)

ψp

(
fy,ry,p+1(y)

)
∣∣∣∣∣∣
≤Npdim(X⊗Qp)−1/2.
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Hence,
∣∣∣∣

1
pn
I1

∣∣∣∣≤Np−2n+dim(X⊗Qp)−1/2

for large p. If fy,ry,p is non-reduced, then dimX⊗Qp = n−1. If fy,ry,p is reduced,
then dim(X⊗Qp)≤ n−2. By (1.5.1) of Lemma 1.5, c0(fy)≤ 1 and (1.4.5), one
finds in any case that

(ry,p+2)c0(fy)≤ 2n−dim(X⊗Qp)+1/2.

Hence,

1
pn
|I1| ≤Np−(ry,p+2)c0(fy) ≤Np−(ry,p+2)ay,p(F ) =Np−may,p(F )

for each large p, which finishes the proof of (1.4.2) for m = ry,p+ 2. One derives
(1.4.1) for m= r+2 by adapting the argument showing (1.4.2) as in the proof for
m= r+1. �

2.6. Finite field extensions. As usual it is possible to prove analogous uni-
form bounds for all finite field extensions of Qp and all fields Fq((t)), when one
restricts to large residue field characteristics. We just give the definitions and for-
mulate the analogue of Conjecture 1.2 and the analogue of Theorem 1.4.

LetO be a ring of integers of a number field, and letN > 0 be an integer. Let F
be a polynomial with coefficients in O[1/N ] in the variables x= (x1, . . . ,xn). Let
CO[1/N ] be the collection of all non-archimedean local fields K (of any character-
istic) with a ring homomorphism O[1/N ]→K (where local means locally com-
pact). For K in CO[1/N ], write OK for its valuation ring with maximal idealMK

and residue field kK with qK elements. Further write ψK :K→C
× for an additive

character which is trivial on the valuation ringOK and nontrivial on π−1
K OK where

πK is a uniformizer of OK . The analogues of the sums S(F,p,m) and Sy(F,p,m)

for K in CO[1/N ] are the following integrals for λ in K×;

S(F,K,λ) :=
∫

x∈On
K

ψK

(
F (x)

λ

)
|dx|

and, for y ∈ On
K ,

Sy(F,K,λ) :=
∫

x∈y+(MK)n
ψK

(
F (x)

λ

)
|dx|,

where |dx| is the Haar measure on Kn, normalized such that On
K has measure one,

and where y+(MK)n =
∏n

i=1(yi+MK).
The following naturally generalizes Conjecture 1.2, again formulated with the

log-canonical threshold in the exponent, where other exponents, like the motivic
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oscillation index of [5] or the complex oscillation index of [1, Section 13.1.5] or
[16], that can be larger than 1, again would make sense as well.

CONJECTURE 2.7. There exist M > 0 and a function LF : N → N with
LF (m)� mn−1 such that for all K ∈ CO[1/N ] whose residue field has charac-
teristic at least M , all y ∈ On

K , and all λ ∈ K× with ord(λ) ≥ 2, if one writes
m= ord(λ), one has

∣∣S(F,K,λ)
∣∣
C
≤ LF (m)q

−ma(F )
K ,

and

∣∣Sy(F,K,λ)
∣∣
C
≤ LF (m)q

−may,K (F )
K .

Here ord denotes the valuation on K× with ord(πK) = 1, and ay,K(F ) equals the
minimum of the log-canonical thresholds of F (x)−F (y′) at y′, where the minimum
is taken over all y′ ∈ y+(MK)n.

With the same proof as for Theorem 1.4, we find the following.

THEOREM 2.8. Let F be a polynomial over O[1/N ]. There exist M > 0 and
a constant LF such that for all K ∈ CO[1/N ] whose residue field has characteristic
at least M and for all λ ∈ K×, if one writes m = ord(λ) and if 2 ≤m ≤ r+ 2,
resp. 2≤m≤ ry,K +2, then one has

∣∣S(F,K,λ)
∣∣
C
≤ LF q

−ma(F )
K ,

resp.

∣∣Sy(F,K,λ)
∣∣
C
≤ LF q

−may,K (F )
K .

Here r is the minimum of the order of vanishing of the functions x 	→ F (x)− b at
the singular points of F = b, where b runs over an algebraic closure of K , and
ry,K(F ) is the minimum of the order of vanishing of the polynomial mappings x 	→
F (x)−F (y′) at y′, where y′ runs over those singular points of

∏n
i=1(yi+MK)

with cy′(F −F (y′)) = ay,K(F ).

2.9. A recursive bound for c0(f). We conclude the paper with a general-
ization of the bound of Proposition 1.6, which also sharpens (1.5.2). Let f be a
nonconstant polynomial over C in the variables x = (x1, . . . ,xn) with f(0) = 0,
and write

f =
∑

i≥1

fi,(2.9.1)

with fi either identically zero or homogeneous of degree i.
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For e a positive integer, let de be the least common multiple of the integers
1,2, . . . ,e, and let Ie(f) be the ideal generated by the polynomials

f
de/(e−i+1)
i

for i with 1 ≤ i ≤ e. Write c(Ie(f)) for the log-canonical threshold of the ideal
Ie(f). (The log canonical threshold c(I) of a nonzero ideal I in n variables over C
can be defined analogously as in Definition 2.1, for instance as minE{ ν

N }, where
π is now any fixed log-principalization of I and N is now the multiplicity along E
of the divisor of IOY . See e.g. [17] for more details.) We put c(I) = 0 when I is
the zero ideal.

THEOREM 2.10. One has for any e > 0 that

(e+1)c0(f)≤ n+de · c(Ie(f)).(2.10.1)

Before proving Theorem 2.10, we state an equivalent formulation and give
some illustrative examples of (2.10.1).

Write as usual f =
∑

i≥r fi, where fr is nonzero. For k a positive integer, let
Jk(f) be the ideal generated by the polynomials

f
dk/(k−i)
r+i

for i with 0≤ i≤ k−1. Then

(r+k)c0(f)≤ n+dk · c(Jk(f)).(2.10.2)

This reformulation (2.10.2) follows directly from (2.10.1), using the multiplica-
tivity of the log-canonical threshold, namely, that a · c(Ia) = c(I) for any integer
a > 0 and any ideal I . Its advantage is that the involved numbers are smaller.

For k = 1, we obtain

(r+1)c0(f)≤ n+ c(fr),
which is Proposition 1.6. The case k = 2 sharpens and generalizes (1.5.2):

(r+2)c0(f)≤ n+2c(fr,f
2
r+1).

As a third example, for k = 3, we have

(r+3)c0(f)≤ n+6c(f 2
r ,f

3
r+1,f

6
r+2).

The proof of Theorem 2.10 is similar to the first one of Proposition 1.6.

Proof of Theorem 2.10. For any ideal I of C[x] and any integer p > 0, we will
write Cont≥p(I) for

{
x ∈ C[[t]]n | h(x)≡ 0 mod (tp), for all h ∈ I}.
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By Corollary 3.4 of [17], there exists k > 0 such that

dekc(Ie(f)) = codimCont≥dek(Ie(f)),(2.10.3)

where the codimension is taken as before (namely after projecting by ρm for high
enough m). Now define the cylinder B⊂C[[t]]n with ρk−1(B) = ρk−1({0}) = {0}
and, (under corresponding identifications)

B := ρk−1({0})× tkCont≥dek(Ie(f)) = {0}× tkCont≥dek(Ie(f))⊂ C[[t]]n.

By the homogeneity of the fi, one checks for each i that

B ⊂ Cont≥k(e+1)
0 (fi),

and we thus have that

B ⊂ Cont≥k(e+1)
0 (f).

Hence, by Corollary 3.6 of [17], one finds

k(e+1)c0(f)≤ codimB.(2.10.4)

On the other hand, one finds by (2.10.3) and the definition of B that

codimB = kn+ codim
(
Cont≥dek(Ie(f))

)
= kn+dek · c(Ie(f)).

Using this together with (2.10.4) and dividing by k, one finds (2.10.1). �

Remark 2.11. Also for Theorem 2.10, we could give another proof along the
lines of the alternative proof of Proposition 1.6. More precisely, one blows up the
origin, constructs a log-principalization of the ideal Ie(f), and performs an ad-
equate weighted blow-up in order to obtain an exceptional component with the
desired numerical invariants.
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